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Abstract

It is known that the exact analytic solutions of wave scattering by a circular cylin-

der, when they exist, are not in a closed form but in infinite series which converges

slowly for high frequency waves. In this paper, we present a fast numerical solution

for the scattering problem in which the Boundary Integral Equations, reformulated

from the Helmholtz equation, are solved using a Fourier spectral method. It is shown

that the special geometry considered here allows the implementation of the spectral

method to be simple and very efficient. The present method differs from previous ap-

proaches in that the singularities of the integral kernels are removed and dealt with

accurately. The proposed method preserves the spectral accuracy and is shown to have

an exponential rate of convergence. Aspects of efficient implementation using FFT are

discussed. Moreover, the boundary integral equations of combined single and double-

layer representation are used in the present paper. This ensures the uniqueness of the

numerical solution for the scattering problem at all frequencies. Although a strongly

singular kernel is encountered for the Neumann boundary conditions, we show that the

hypersingularity can be handled easily in the spectral method. Numerical examples

that demonstrate the validity of the method are also presented.
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NASl-19480 while the author was in residence at the Institute for Computer Applications in Science and

Engineering, NASA Langley Research Center, Hampton, VA 23665, USA.





INTRODUCTION

The exact analytic solutions of wave scattering by a circular cylinder, obtainable

for simple incident waves, are not in a closed form but in infinite series of Bessel and

Hankel functions of increasing orders. Such solutions converge slowly, especially for

high frequency waves, which render their numerical evaluation inefficient. This paper

presents a fast numerical solution of wave scattering that only requires the computation

of Bessel and Hankel functions of order zero. Furthermore, the numerical solution is

valid for any form of the incident waves of all frequencies.

When developing numerical solutions, wave scattering problems are often conve-

niently formulated in Boundary Integral Equations (BIE) 1. The advantages of the

Boundary Integral Equation Method (BIEM) include reducing the dimension of the

problem and transforming an infinite domain to finite boundaries in which the far field

radiation condition is satisfied automatically. The Boundary Integral Equations are

commonly solved computationally by the Boundary Element Methods (BEM) 2. In

this method the boundary is divided into finite elements and integrations over each

boundary element are approximated by quadratures_ e.g. the linear elements.

In this paper, we develop a Spectral Method of solving the Boundary Integral

Equations, reformulated from the Helmholtz equation, for numerical solutions of wave

scattering by a circular cylinder. Previously, for this special geometry, a "fast numerical

method" based on the Fourier approximations has been formulated by Bojarski 3, who

pointed out that the boundary integral equation of wave scattering can be solved easily

and efficiently in the Fourier spectrum domain of the solution. Due to the simplicity

of the geometry, an explicit relation between the Fourier coefficients of the solution

and those of the boundary condition was found. It was argued that the numerical
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approach was more efficient than directly evaluating the infinite series of the exact

solutions. Indeed, the exact solutions contain Bessel and Hankel functions of higher

orders whose numerical evaluation is more difficult and costly as the order increases.

Recently a similar approach has been used and extended by Schuster 4 for a wave

transmission problem of concentric cylinders.

In the present paper, we point out that the numerical formulations given previously

are not achieving the optimal accuracy of the Fourier spectral methods. It is known

that, although any periodic function can be approximated by a truncated Fourier se-

ries, the rate of convergence of such an approximation depends on its smoothness.

Unfortunately, the integral kernels for the Helmholtz equation are not smooth. In par-

ticular, the 2-D Green's function of the Helmholtz equation, appearing in the integral

equations, possesses a logarithmic singularity. Furthermore, the normal derivative of

the Green's function also contains a term involving the logarithmic function. The non-

smoothness of the integral kernels, however, was not explicitly treated in the previous

formulations. It will be seen that it is critical to remove the non-smoothness of the

integral kernels in order to achieve fast convergence in the Fourier spectral formulation.

By a proper treatment of the singularities, the present numerical formulation yields

accurate solutions With significantly fewer datum points. Moreover, the boundary in-

tegral equations of combined single and double-layer representation are used in the

present paper. This ensures the uniqueness of the numerical solution for the scatter-

ing problem at all frequencies 1'5. Although a combined layer formulation results in

a strongly singular kernel for the Neumann boundary conditions, we show that the

hypersingularity is handled easily in the spectral method.

In the next section, the formulations of the Boundary Integral Equations for wave



scatteringproblemsaregiven. Then, in sectionsII andIII, the Fourierspectral methods

for the Dirichlet and Neumannboundary conditions are presented.Numerical results

areshownin sectionIV. SectionV containsthe conclusions.Someanalytic resultsare

alsogiven in the Appendix.

I. BOUNDARY INTEGRAL EQUATIONS

Let us consider wave scattering by a circular cylinder P of radius a. The wave

equation for the scattered function ¢ with assumed time dependency of e -iwt is reduced

to the Helmholtz equation

where

V2¢-t- n2¢ : 0 (1)

= w/c (c is the wave speed) and V 2 is the 2-D Laplace operator V 2 :

02 02

(_X 2 _- _y2" The boundary condition considered in this paper will be one of the following

types :

Dirichlet(soft): ¢(_') = b(_') On V

or

a¢
Neumann(hard): On (_') = b(_') On F

The Helmholtz equation (1) together with the boundary condition can be refor-

mulated into a Boundary Integral Equation. This can be done in various ways 1,5. For

scattering problems considered in the present paper, we use a combination of single

and double-layer formulation in which the solution ¢ at any point W in the scattered

field is represented by an integral on the boundary as 5



where 77is any real number such that

_Rc(_) > 0

The use of a combined formulation ensures the uniqueness of the numerical solution

for exterior problems 1'5. In (2), f(_') is an unknown layer distribution function and

the Green's function G(_', _.l), whose form will be given later, satisfies the following

equation

v2c + = e') (3)

0
Here the normal derivative _nn is assumed to be taken in the direction outward from

the cylinder.

The Boundary Integral Equation associated with the layer representation (2) is 5

lf(_r)+ fr (_n-i_TG) f(_'r)dI" = b(_'r) (4a)

for Dirichlet boundary conditions and

-2J_'rv)+ \0n'0n i_n;n'
(4b)

for Neumann boundary conditions, respectively. In (4a) and (4b), _'r denotes the bound-

ary points. After the layer distribution function f has been solved from the integral

equation (4a) or (4b), the solution of the Helmholtz equation ¢ is found by the bound-

ary integral (2).

Now for a circular cylinder of radius a, the boundary contour can be expressed as

Cr(O) = (acosO, asine), 0 < O < 2re

The normal vector to be used in (4a) and (4b) is n = (cos 0, sine).

4

(5)



Tile Green's function and its normal derivative are s,6

and

OG

On VF(0)- _r(0')[

11

(6)

_ ixH_,)(2xalsinO-O'_ __.__)lsin0-0'2 1 (7)

in which we have used the fact that 1_;.(0)- ¢'F(0')I= 2a sin _-_1"

It is important to note here that G and oa_-ff are functions of 0 - 0'. As will be seen

later, this allows the implementation of the Fourier spectral method to take a simple

form.

We thus express the boundary integral equation (4a) for the Dirichlet boundary

conditions as

= b(o') (sa)

= b(o') (8_)

_f(O') + fo2'_ (_n (O - O') - irIG(O - O')) f(O)adO

and equation (4b) for the Neumann boundary conditions as

_f(O,) + _2_r / 02G . OG O')) f(O)adO[ On-y-_0_(° - 0')- _ gy_,(0-

For clarity, the dependencies on 0 and 01 have been expressed explicitly in (8a) and

(8b).

In the next two sections, we give the numerical formulations of solving the inte-

gral equations (Sa) and (8b) by a Fourier spectral method. Since different types of

singularities are encountered, the two equations will be dealt with separately.

5



II. SPECTRAL METHOD FOR DIRICHLET BOUNDARY coNDITIONS

A. Formulation

Let the layer distribution function f(O) and the boundary condition b(O) be ap-

proximated by the truncated Fourier series as

N/2-1

f(0)= Z fneinO (9)

n=-N/2

N/2-1

b(0)= Z bneinO (10)

n=-N/2

where bn are obtained by the FFT from prescribed boundary condition and fn are the

unknown coefficients. In (9) and (10), the particular form of truncated Fourier series

has been taken for the convenience of applying FFT programs.

Substituting (9) and (10) into the boundary integral equation for the Dirichlet

boundary conditions (8a), we get

N/2-I

N/2-1 N/2-1 [ _02x (0 a ) ] " O'
1 • , einOa

- n=-N/2 n=-N/2 n=-N/2

(11)

For simplicity, let

z = 0-0'

z

z

By equating the coefficients of e in°', equation (11) is easily reduced to

)f . + f . -ff-dn(z") - i,Ta (z") =e inx adz, bn (12)

for -N/2 <_ n <_ N/2 - 1.

It is seen that the integral appearing in (12) are related to the Fourier coefficients

OG Xof _( ) and G(x). From (6) and (7), it is also clear that both are periodic functions of

6



x, with a period of 27r. Thus if we let G(z) and _--_-(x) be approximated by truncated

Fourier series as

N/2-1

G(x)= E gne-i"_ (13)

n=-N/2

N/2-1
OG

_nn (x)= E hne-inx (14)
n=-N/2

then, the integral in (12) equals to 2ra(hn - iTIgn ). It follows that

_fn + 2raf. (hn - i_gn) = bn (15)

Therefore, the Fourier coefficients of the layer distribution function f(O) are ob-

tained explicitly as

an

A =1 (16)
+ 27ra (hn -- i_gn)

The above equation shows that once the Fourier coefficients of G(x) and OGtx_-g-fit ]

have been found, the layer distribution function f(O) is known immediately.

Actually, the Fourier coefficients of G(x) and °Grx_-g-ff_ / can be found in exact form

using higher order Bessel and Hankel functions. They are derived in Appendix A.

Nonetheless, the numerical evaluation of the exact expressions becomes more ineffective

and costly as the order of the special functions increases. In what follows we give the

numerical method that computes the Fourier coefficients gn and h. accurately and

efficiently.

B. Computation of gn and hn

In general, the Fourier coefficients of a periodic function can be obtained efficiently

by using a Fast Fourier Transform algorithm (FFT). However, the accuracy of the

7



Fourier coefficients computed by the FFT using a given number of datum points de-

pends on the smoothness of the function. Only when the function is infinitely smooth

(i.e. infinitely differentiable), the error of Fourier coefficients computed by FFT de-

cays faster than any power of l/N, where N is the number of datum points. Such a

convergence is often referred to as an exponential convergence and the method is said

to have spectral accuracy 7,s. Our aim here is to compute gn and hn by the FFT with

spectral accuracy even though the functions G and oa-Off are not smooth.

In the numerical approaches proposed previously 3'4, the Fourier coefficients gn and

hn were computed directly as the FFT of the G(x) and -_nc(x) respectively. However,

the Green's function G(x) has a logarithmic singularity at x = 0, where 0 = 0 _, due

to the Hankel function of order zero in (6), and its Fourier series converges at the rate

of 1/N. Thus direct computation of g,_ from G(x) using FFT yields results whose

accuracy is only comparable to a first order method. Furthermore, the function _-_an(:c)

also has a non-smooth derivative at z = 0, and its Fourier series converges at the

rate of 1/N 3. Thus direct computation of h,, from aatx_ is only comparable to aOn_ "

third order method. Alternatively, as will be shown below, by properly treating the

non-smoothness of G(x) and _-_na(X), gn and hn are computed with spectral accuracy.

To examine the singularity of G(x), we note that

i [J0 (2xa [sin 2]) + iYo (2ha sin 21)]G(x)= i-tl(1) (2tca sin2) _4-o=

in which J0 and Y0 are the zeroth order Bessel functions of the first and second kind,

respectively. Using the asymptotic series for small arguments, we have 9

z 2 z 4

Jo(z) = 1 - -_- -4- 6---4....

(2) _ _o(zl _2 In Jo(z) + + .....Y0(z)= 7

8



It follows that, for ]x[ small,

1 ln(a a sinX])Jo(2aalsinX])_ 7 iC(x) - + -i+ °(x2) (17)

in which O(x 2) represents a power series in x 2, and 3' is the Euler's constant, 3' =

0.577215 .... To compute the Fourier coefficients of G(x) efficiently and accurately, we

note that the Fourier series of the logarithmic periodic function In (tza Isin in (17)

is 6 :

0(3

( sin x) (_2) _ cos(nx)In _a _ = In - (18)
n

n=l

Thus we can "subtract out" the singularity in G(x) by forming

-- 1 (_a sinX)jo I)G(x) : //4(1)(2xa Isin 21) + In (2_a sin x4 ``0 _ 2 (19)

and then writing the Green's function as

-- 1 (xa[sin_G(x) : G(x)- _ In x t) J0 (2aa Isin x ) (19')

It is easy to see that G(x) is finite for all values of x. Furthermore, both G(x) and

J0 (2aa sin _ ) in (19') are periodic and infinitely differentiable. Thus their Fourier

coefficients can be computed with spectral accuracy using FFT. The Fourier coefficients

of the Green's function G(x), gn, will be computed according to (19') where the term

involving the logarithmic function is computed by using convolution sums.

We now study the non-smoothness of the normal derivative of the Green's function

OG

On (x). The asymptotic series of the Bessel functions of first order for small argument

are 9 :
Z Z 3

Jl(z) - 2 16 +""

Y1 (z) - 2 + 21n (2) j,(z) + 2,T- 1Irz = 2_ z ....



Then

it:H(1)(2t:alsinXl)lsinX I

it; [J1 (2t:alsinX ) + igl (2t:alsin 21)] Isin214

47ral +_t: ln@a sinXl)gl_ (2t:alsin2]) sinX[-_ +O(x 2) (20)

Thus although oa is a finite function, due to the logarithmic function appearing in_-ff

the second term shown in (20), it does not have a smooth second derivative at x = 0.

For this reason, its Fourier approximation will converge only at the rate of 1/N a.

oa however, can be found easily using the relation toThe Fourier coefficients of _-ff,

gn given in Appendix A. In particular, we have

t:2a i

5¢0, T,_- 1--i-n-n (g.+1 -g.-1) n N N

t:2a 1

-T-(g2 -- go) -- agl n = 0
ha =

t:2a

g2a n ----N _ 1
4n g_--2

Thus it is only necessary to compute gn, the Fourier coefficients of G(x).

(21)

C. Fast Fourier Transforms

The numerical implementation of computing g. by (19') is given in this subsection.

Let us introduce Fourier collocation points

2_-j j = 0,1, 2, ..., N - 1
xj= N'

For convenience of discussion, denote the following Fourier series approximations

N/2-1

-G(x) = _ gne- -inr (22a)

n=-N/2

IO



(2 oIs n l)
N/2-a

E pne_in z

n=-N/2

(22b)

The coefficients of these expansions are computed by FFT (backward in the usual

sense) as follows:

1 N-1

_. = _ _ _(xj)e_"_
j=0

N-1

1 (2xa [sin
j=0

(22a')

-- B

in which G(xj) is computed by (19). For the value of G(x) at x = 0, the following

limit, obtained from (17), can be used •

_(o)- _ + i27r

In addition, we denote (18) as

O0

ln(Jcalsin2]) = E ane-inz (22c)
n_--OO

1where a0 = In t_a and a. - 2 Inl for n # 0.

Then, by (19'), the Fourier coefficients of G(x) is computed as

1

g- = 9n - 2_r u,, (23)

where un is the convolution sum :

N/2-1

Un= E pman-m (24)

m=-N/2

We note that the convolution sums in (24) require N multiplications for each Un.

Thus the total operations for the convolution sums are of order O(N2). This cost can

11



be reducedconsiderablyto O(N log 2 N) by the use of a pseudospectral transformation

method with de-aliasing techniques 7's. For completeness, evaluation of (24) with a

"padding" de-aliasing technique is given in Appendix B.

III. SPECTRAL METHOD FOR NEUMANN BOUNDARY CONDITIONS

We now discuss the Fourier spectral method for the Boundary Integral Equation

(8b) of the Neumann boundary conditions. Upon substituting the truncated Fourier

series of the layer distribution function f(0) into (8b), we get

g/2-1

iy N/2-, f,_ eine' g/2-1 [ /02_r( 02 G sr/_n_Tnl) einOad0]=" OG Z bne'n°" '2- _ + _ f" \0n'0n
n=-N/2 n=-g/2 n=-N/2

(25)

where bn are the Fourier coefficients of the specified Neumann boundary condition.

Again the integral appearing in equation (25) is directly related to the Fourier

OG
coefficients of °2G and _-_. It is easy to find that the Fourier coefficients of _ aregffrb-ff

the same as those of _, already given in the previous section as hn. The apparent

difficulty here is with the second normal derivative of the Green's function b-_-_"°2G It can

be shown that this function is strongly singular at x = 0 and, indeed, is not integrable

in the ordinary sense. Fortunately it can also be shown that the integral with the

second normal derivative can be transformed into one involving tangential derivatives

with reduced singularity. In particular, we have a°

_02_r 02G in# .,_ _02_ [! OeinO lOG tc2n t ]0n--_-0ne aa_ = O0 a O0 t + • n G e inO a dO (26)

10 10

where a 0--0 and a _7 represent tangential derivatives on the boundary.

The right hand side of (26) is now integrable in the sense of Cauchy Principal Value.

To show this, we only need to note that by the expression of the Green's function given

12



in (6) weget

OG

O01 40_ o = 2

itca . (1) (2xa lsi n sinx (27)

Recalling (20), the asymptotic expression of _ for small x is found as

_ x ga sin x
O0tOG 87r Sinsin_ 2 47r In (_a Isin 2[ ) J1 (2_a sin21 ) Is-_n _ +O(x) (28)

where O(x) denotes smooth terms of order x and higher.

The singular first term shown above is integrable in the sense of the Cauchy Prin-

cipal Value. In fact, we have

f0 { 0 when n = 0
1 2r sin x einXdx (29)

2_r sinai 2 2isign(n) when n ¢ 0

Upon substituting x = 0 - 0t and equating the coefficients of e in°', equation (25)

is reduced to

+ fn --_"_7(z)+a2cos(x)G(x)-iTl-_-_n_(X) einZadx=bn (30)

in which we have used the fact that, for a circular cylinder,

n'. n = cos(0- 0')

The integral in (30) will now be evaluated through the Fourier coefficients of each term.

For the first term, the Fourier coefficients of _ are obtained from the relation

OG OG

00' Ox

N/2-1

Z • -inxzn gne

n=-N/2

(31)

where g. are the Fourier coefficients of a(x) by (13).

13



The Fourier series approximation of the second term in the integral of (30) can also

be found using g. since we have

where

cos(x)a(x) = cos(x)
N/2-1 N/2-1

E g.e-i"_._ E

n=-N/2 n=-N/2

gn = l(gn-1 "Jr gn+l)

_.e -_"z (32)

n = -N/2

-N/2 + l <_ n <_ N/2- 2

n = N/2 - I

Hence equation (30) is reduced to the following algebraic equations

(33)

n2 /f. + 2_raf. --_gn + _2_,_ _ i_lh n = b. (34)

for -N/2 < n < N/2 - i.

Therefore, the Fourier coefficients of the layer distribution function f(O) for the

Neumann boundary conditions are obtained explicitly as

b.

.2 ) (35)fn- it; (--_9n +-_ + 27ra t¢2_. - iTIh,,

where gn, gn and h. are computed by (23), (33), and (21), respectively.

We point otit, however, that ._,, as given by (33) and, indeed, h. of (21), are not

exact for n = -N/2 and N/2 - 1, owing to a truncated series of G(x) in the compu-

tation. Whereas it is possible to compute these two coefficients exactly, the resulting

error in the last two coefficients of f. is negligible because b., in the numerator, de-

cays exponentially as for smooth boundary conditions. That is, f. for n = -N/2 and

N/2 - 1 are necessarily negligibly small if N is sufficiently large. For simplicity and

practicality, (21) and (33) are retained in the numerical calculations.

14



IV. NUMERICAL EXAMPLES

In this section, numerical results of a plane wave scattering by a circular cylinder

are presented. The incident wave is assumed to be

¢i --'_ ¢itcx

The scattered wave, ¢, satisfies the Helmholtz equation (1). The boundary conditions

considered here are the Dirichlet type ¢ = -¢i and the Neumann type _n = --_"

The solutions for the scattered field are obtained by the layer representation (2) as

¢(F') = fo2X (_n - iyG) f(O)adO

= a E fn -_n -- irlG einO dO
n=-N/2

The above integral can be easily evaluated directly using FFT, since the Green's func-

tion has no singularity for points lying outside of the boundary. The details are omitted

here.

For plane incident waves, exact solution is given by infinite series of the Bessel and

Hankel functions 6. Our purpose here is to demonstrate the exponential rate of conver-

gence of the numerical solutions. We emphasize again that the numerical formulation

applies to any form of the incident waves. Due to its simplicity, a sample FORTRAN

program is listed in Appendix C.

In numerical calculations, the radius of the cylinder, a, is taken to be 1 and also

77 = 1. Computations for xa = 1, 10 and 100 have been carried out. In Tables I to

IV, numerical values of the layer distribution function f(0) and the scattered function

¢ at far field are given for selected points in space. Exact values at far field are also

shown in the tables. Clearly as the number of Fourier collocation points increases, the

15



numerical solution convergesexponentially fast. Significant improvementsin accuracy

are observedwith relatively small increaseof the number of datum points. This is

often true for spectralmethods in general.The error decreasesdramatically whenthe

number of points is largeenoughto resolvethe basicfeaturesof the solution.

The correspondinglayer distribution function f(O) is plotted in Figures 1 to 6

for the Dirichlet and Neumann boundary conditions for _a = 1, 10 and 100. These

graphs demonstrate again the remarkable accuracy of the Fourier spectral methods

with relatively small number of datum points.

Far field scattered intensities, computed as I_'1¢2, are plotted in Figure 8 and 9 for

the Dirichlet and Neumann boundary conditions, respectively.

V. CONCLUSIONS

A fast numerical solution of wave scattering by a circular cylinder has been pre-

sented. It is shown that by properly removing the non-smoothness of the integral ker-

nels of the Boundary Integral Equations, Spectrally accurate numerical solutions are

obtained. The numerical error decays exponentially as the number of datum points

increase. This implies that the present method requires significantly fewer points for

achieving a given accuracy in comparison with previous numerical approaches. The

present method is also easy to implement.

Moreover, the combined single and double-layer formulation of the Boundary Inte-

gral Equations ensures the uniqueness of the numerical solution for all frequencies. It

is shown that the hypersingularity of the Boundary Integral Equations can be handled

easily in the spectral method.

16



APPENDIX

A. Exact expressions of gn and hn

In this appendix we derive the exact analytic expressions for the Fourier coefficients

of G(x) and aGIx_

It can be shown that, e.g. by (7.2.51) of ref. 6,

H_D (2xa Isin 21 )

oo

= E H_)(xa)Jm(xa) e-imx (A1)

/Tg------00

Hence

lfo2"g. = _ G(z)d "_dz

l 2r

=2_._ ° /.O) (2xa [sin 21) einx4 o dx

= 4H(nl)(tca)Jn(xa)

Moreover, for n _ 0, using integration by part and (A1),

1 [2r cOG inr
,!0

ix 2_r X

-- _ fo H_I) (2xalsin2])Isin2JeinX dx

--47rnn2a_2"_H_')(2tca]sin2)lsin-_]c°s-_X x einX dx

-- x2ail6rt [ "(1)+l(t_a)Jn+l(xa) -- "(nl)-l(xa)Jn-l(xa)]

- x2a(gn+l -gn-1)
4n

where use has been made of the formula 9

17



For n = 0, further calculations show that

x2ai [H_l)(t¢a)j2(_a) H_l)(t_a)Jo(xa)]_ i H(1)(t_a)Jl(x_a)- - _ 1ho 16

a2a 1

= -_--(g2- 90)- -gla

B. Evaluation of convolution sums

An algorithm of computing convolution sums u, with O(N log 2 N) operations is

shown below s.

Let M > 3N and

_j=2_rj/M , j=O, 1,2,...M-1

Compute the following using FFT for j = 0, 1,2, ...M - 1 :

M/2-1

Aj = _ am e-irn_j

m=-M/2

M/2-1

Pi= }2 _'_-"_
m=-M/2

where

f am -N < m < N- 1
5m

0 other

f Pr,

( 0

-N/2 < m < N/2- 1

other

and form the product

Uj = AjPj

Then the convolution sum u, is the (backward) FFT of Uj as follows

1 M-1

u. = _ Z u;_"_
j=O

18



for -N/2 < n <_ N/2 - 1.

C. FORTRAN program

A FORTRAN program of implementing the Fourier spectral method is listed below.

(The routines cftti, cfttf and cfltb denote initialization, forward and backward FFT

transforms respectively.)

program circle

**************************************************************************

c n : number of points; isoft=l : Dirichlet B.C.; isoft=O : Neumann B.C.

Pa_ameter(n=32,ak=lO,O,isoft=l,eta=l,0,n1=n-l,_aif=n/2,m=3,n,

> rn=float(n),pi=3.141592663S8979324,euler=O.577215664901S3286)

complex b(O:nl),fn(O:nl),gbaz(O:nl),gn(O:nl),hn(O:nl),p(O:nl),

> gtilde(O:nl),am(O:m-1),pm(O:m-1),wsave(2OOO),wsave2(2OOO),ei,phi
ei=(o.o,l.0)
call cffti(n,wsave)

call getbc(n,ak,b,ei,pi)
call cfftf(n,b,esave)

do 10 j=0,n-1

tmp=2.0*ak*abs(sin(pi*float(j)/rn))
if(j.eq.O) then

gbax(O)=-euler/2.0/pi+ei/4.0

p(0)=l.0
else

gbac(j)=ei/4.0*(besjO(tmp)+ei*besyO(tmp))

> +0.5*alog(tmp/2.0)*besjO(tmp)/pi

p (j) =bes j 0 (trap)
endif

10 continue

call cfftb(n,gbar,wsave)

call cfftb(n,p,wsave)

am(0)=alog(ak/2.0)
am(2*n)=-l.O/2.0/zm

do 21 i=l,n-1

am(i)=-l.Ol2.01float(i)

21 am(2*n+i)=l.O/2.0/float(i-n)

do 22 i=O,nhalf-I

pm(i)=p(i)

22 pm(5*nhalf+i)=p(nhalf+i)

call cffti(m,wsave2)

call cfftf(m,am,wsave2)

call cfftf(m,pm,wsave2)

do 23 j=0,m-1

23 pm(j)=am(j)*pm(j)

call cfftb(m,pm,wsave2)

do 31 i=O,nhalf-I
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En(i)=gbar(i)-O.5_pm(i)/float(m)/pi

31 En(nhalf+i)=gbar(nhalf+i)-O-5_pm(S_nhalf+i)/fl°at(m)/pi

hn(O) =ak**214. O* (gn (2)-gn (0))-gn (I)

hn(nhalf-%)=ak**2/4.0/float(nhalf-l)*gn(nhalf-2)

hn(nhalf)=ak**2/4.0/float(nhalf)*gn(nhalf+l)

hn(n-i)=aX**2/4.O*(gn(0)-gn(n-2))

gtilde(O)=O.5*(gn(1)+gn(n-l))

gtilde(nhalf-1)=O.5#En(nhalf-2)

gtilde(nhalf)=O.5#gn(nhalf+l)

gtilde(n-1)=O.5#(gn(O)+gn(n-2))

do 32 i=1,n-2

itrue=i

if (i. ge.nhalf) itrue=i-n

if(i.eq.nhalf-l.or.i.eq.nhalf) go to 32

hn(i)=-ak_.2/4.0/float(itrue)_(gn(i+l)-gn(i-1))

gtiide(i)=O.S*(gn(i-1)+En(i+1))

32 continue

do 40 i=O,n-1

if(isoft.eq.l) then

fn(i) =b(i)/(0.5*rn+2. O*pi, (hn (i)-ei*eta*gn (i)) )

else

itrue= i

if (i. ge. nhalf) itrue=i-n

fn(i)=b(i)/(O.S.ei*eta*rn+2.0*pi#(-float(itrue)*#2_n(i)

> +ak_2_gtilde(i)-ei*eta_hn(i)))

endif

40 continue

c The following is to find phi at far field r=rO

************************************************************

rO=iO.O

npoint=4

do 70 ii=l,npoint

sj=2.0_pi*float(ii-l)/float(npoint)

do 71 j=O,n-1

theta=2.0.pi*float(j)/rn

rj=sqrt(l.O+rO*rO-2.0#rO*cos(theta-sj))

dj=l.O-rO*cos(theta-sj)

tmp=ak*rj

gn(j)=ei/4.0_(besjO(tmp)+ei*besyO(tmp))

71 hn(j)=-ei.ak/4.0*(besjl(tmp)+ei*besyl(tmp))*dj/rj

call cfftb(n,gn,wsave)

call cfftb(n,hn,wsave)

phi=O.O

do 72 i=O,n-1

72 phi=phi+2.0*pi*fn(i)*(hn(i)-ei*eta*g n(i))/rn

70 write(3,100) rO,sj,phi,cabs(phi)

100 format(' rO=',e15.6,' theta=',el5.6/' phi=',3e17.10)

ggg stop
end

subroutine getbc(n,ak,b,ei,pi)

complex ei,b(O:n-1),tmp

do 10 j=O,n-1
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10
tmp=ei*ak*cos(2.0*pi*float(j)/float(n))

b(j)=-cexp(tmp)
return

end
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TABLE I

Values of the layer distribution function f(O) at selected points

on the boundary. Dirichlet boundary condition.

N 0 = 0 ° 0 = 90 ° 0 = 180 ° Error

_a=l

4 1.101447573 1.102982967 1.124378820 10 -2

8 1.113205176 1.095419894 1.146430615 l0 -3

16 1.112753432 1.094877536 1.145739275 10 -s

24 1.112753420 1.094877525 1.145739263 10 -12

_a = 10

24 4.590213453 6.904710445 5.180354736 l0 -2

32 4.546357630 6.901732036 5.132718905 10 -3

6.901500667 5.132515158 l0 -s48

56

4.545461066

4.545461055 6.901500659 5.132515156 10-12

_a = 100

224 20.64255659 6.841653547 18.93255934 10 -3

256 20.64325731 6.842244857 18.93221646 l0 -9

6.842244863 18.93221644 10 -12512 20.64325733
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TABLE II

Values of the scattered function ¢ at selected points

at far field r = 10a. Dirichlet boundary condition.

N 0=0 ° 0=90 ° 0=180 °
i

na=l

Error

4 0.4146449903 0.2787718545 0.1852248716 10 -2

8 0.4224209076 0.2612785029 0.2551151985 l0 -4

16 0.4224153154 0.2613031445 0.2552183381 l0 -10

Exact 0.4224153154 0.2613031445 0.2552183381

_a = 10

24 0.8255952003 0.1969679200 0.1864749710 10 -2

32 0.8285176644 0.1953580665 0.2300067055 l0 -4

48 0.8285110664 0.1953543814 0.2300939707 10 -10

Exact 0.8285110664 0.1953543814 0.2300939707

_a = 100

224 0.8562228283 0.1881301853 0.2295232548 10 -3

256 0.8562289911 0.1881326409 0.2294229274 l0 -1°

Exact 0.8562289911 0.1881326409 0.2294229274
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N

TABLE III

Values of the layer distribution function f(O) at selected points

on the boundary. Neumann boundary condition.

0=0 ° 0=900 0=1800 Error

,_a=l

16

24

1.035182633

1.200134116

1.199187560

1.199187560

0.3028073027

0.3972281648

0.3963806796

0.3963806589

0.8616587030

0.8518411247

0.8495643896

0.8495643587

tea --- 10

10 -1

10 -2

10 -7

10-12

24

32

48

56

0.6004486353

0.6274625969

0.6302381163

0.4814454225

0.6575899642

0.6567081358

1.362228889

1.577833267

1.460119442

10 -1

10-2

10 -7

0.6302381517 0.6567081198 1.460119455 10 -12

_a = 100

0.2185547081 1.282490390 2.054272775 10 .2224

256

512

0.2157948725

0.2157947803

1.283008634

1.283008643

2.057912965 10 .7

2.057913072 10 -12
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• TABLE IV

Values of the scattered function ¢ at selected points

at far field r = 10a. Neumann boundary condition.

N 0 = 0 ° 0 = 90 ° 0 = 180 ° Error

Ra=-I

4 0.1583300606 0.1690204144 0.1619964200 10 -1

8 0.1732916160 0.1563414831 0.2312523394 l0 -4

16 0.1733358919 0.1563260243 0.2313583724 10 -10

Exact 0.1733358919 0.1563260243 0.2313583724

_a = l0

24 0.7679584467 0.2167643382 0.1574136977 l0 -1

32 0.7740714632 0.1956069424 0.2282238894 10 -3

48 0.7740874173 0.1955960691 0.2283394143 l0 -10

Exact 0.7740874173 0.1955960691 0.2283394143

224 0.7688015277

256 0.7688018590

Exact

_a = 100

0.1871656432 0.2295250315 l0 -3

0.1871717295 0.2293995512 l0 -l°

0.7688018590 0.1871717295 0.2293995512
m,,,,
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Figure 1. Layer distribution function f(O) for na = 1. Dirichlet boundary condition.
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Figure 7. Directivities of the far filed scattered function, Dirichlet boundary condition.
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